

Our identity: who we are and where we are going Stefano Paleari*

Higher Education and Socioeconomic Development

Bergamo, I3-I4 October 2016
*Cattaneo, Meoli, Paleari, Salanti (2016), Unintended consequences of "cheese slicing" policies: The case of Italian universities

I PART:

Our profession: a matter of identity

II PART:

The trends in the Italian higher education system in the period 2008-2016

Agenda – First part

I) The utilitarian vision of University

- ➤ A «human capital hotbed»
- > Substantial implications

2) The role of social sciences

- > The perception of the university role
- > The peculiarities

3) Management Engineering

- ➤ A field «at the crossroads»
- ➤ George Akerlof's solution
- > Combination is the innovation

The utilitarian vision of University

- Outside academia, universities and their staff are often misrepresented
- The impression is that we are faced with a purely utilitarian vision of the tasks of academic institutions
- The idea of a University at the service of production is rooted in the notion of «human capital»

The utilitarian vision of University – a «human capital hotbed» (1/2)

- There are investments in human capital as well as in fixed capital.
- The description of the importance of what we today name human capital can already be found in the *Wealth of Nations* (Smith 1976, pp. 393-94):
 - > acquired and useful skills of all inhabitants or members of society

The utilitarian vision of University – a «human capital hotbed» (2/2)

- The idea of human capital is well rooted in the history of the economic thinking
- Universities are often seen as the last phase of the «human capital production» process
- However, it is not possible to extend all the considerations relevant to fixed capital to human capital

The utilitarian vision of University – substantial implications (1/4)

- Unlike fixed capital, the land and other forms of immaterial capital, the human capital cannot be separated (or alienated) from its originating owner
- Human capital «walks on men's feet». Hence, any migration process implies a human capital transfer from a region to another
- Since human capital is perishable, even the investment in human capital unavoidably includes a significant depreciation

The utilitarian vision of University - substantial implications (2/4)

- We should be able to allocate human capital resources in a way that within each different level of instruction allows the same marginal rate of "social" return. The latter should not be inferior than the return of alternative private investments.
- Due to the practical inability to achieve reliable estimations, the risk of *overeducation* is always present.

The utilitarian vision of University - substantial implications (3/4)

- If we consider the human capital as a factor of production, we need to consider how it can combined with other necessary factors of production.
- To what extent can an economic system efficiently use the new human capital inserted in the system year after year?

The utilitarian vision of University - substantial implications (4/4)

- In Italy, in the last years, some clearly interconnected issues e.g. investments stagnation, graduates migration and wages reduction
 - have been often highlighted, without the emergence of a satisfying analysis of the related context

The social sciences - the perception of the University role

- Unsurprisingly, the perception of the University role has been criticized
- The scientific disciplines (medicine and engineering) are perceived as characterized by a major and visible impact as well as by a greater social utility.
- The contribution of the so called social sciences cannot be overlooked

The social sciences – the peculiarities (1/2)

- Social sciences belong to the fields of "human dominated" and "human influenced" systems, together with the STEM disciplines (Sciences – including medicine –, Technology, Engineering and Mathematics)
- Natural sciences exclusively depend on the behaviour of nature, which is mainly forecastable and constant over time, while social sciences study the human behaviour that continuously evolves over time

The social sciences – the peculiarities (2/2)

- Social sciences ask the same research questions that natural sciences ask, but the answers change over time.
- Due to this feature, according to the public opinion they are seen as less "scientific".

Management Engineering – a field "at the crossroads" (1/2)

- Management Engineering lies "in the middle ground"
- It can be considered a successful experiment (in the social sciences?)
- However, there are frequent debates over a neither engineering nor economical formation and the combination of «real engineering» topic with technical-economical research field

Management Engineering – a field "at the crossroads" (2/2)

- Going back to social sciences, the aim of social science research can be:
 - > To forecast possible future developments
 - > To inspire the actions of decision-makers

Management Engineering - George Akerlof's solution

- The most difficult issue is always to solve big problems by proposing simple solutions
 - ➤ George Akerlof won the Nobel prize in 2001 by identifying and rationalizing a complex problem related to information asymmetries on the markets
 - ➤ However, the solution of the problem was a simple mathematical model

Management Engineeringcombination is the innovation

- Innovation in education is based on the combination of different disciplines, both in terms of contents and methodologies
 - ➤ Polytechnics were born from the combination of engineering and architectural disciplines. Today they will combine engineering disciplines with the medical ones, which are even richer in technologies

Conclusions (1/2)

- Maybe the fact that Universities are increasingly perceived in utilitarian terms has at least an explanation
 - > The investment in human capital
- In such a context, the critical position of social sciences compared to STEM disciplines is evident
- It is really difficult to innovate at the «crossroad»

Conclusions (2/2)

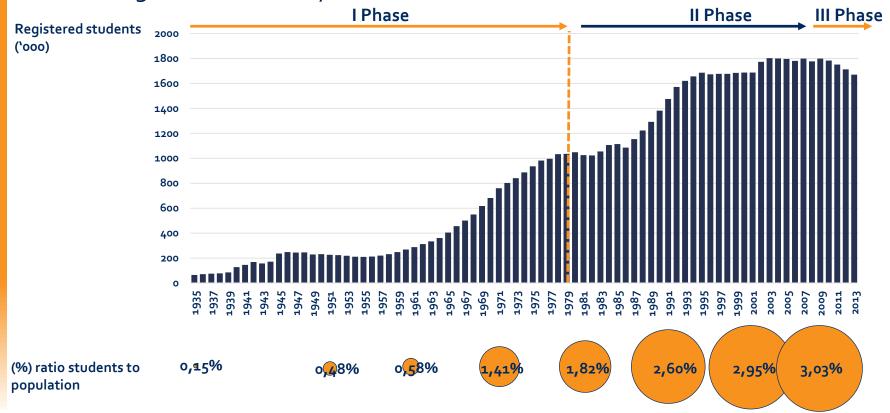
- Management Engineering is a successful experiment along with the difficulty to characterize it (It's like the beauty and the time)
- Social sciences need to gain more and more importance as scientific disciplines which can impact on the future developments of society

II part Stefano Paleari*

Higher Education and Socioeconomic Development Bergamo, 13-14 October 2016

*Cattaneo, Meoli, Paleari, Salanti (2016), Unintended consequences of "cheese slicing" policies: The case of Italian universities

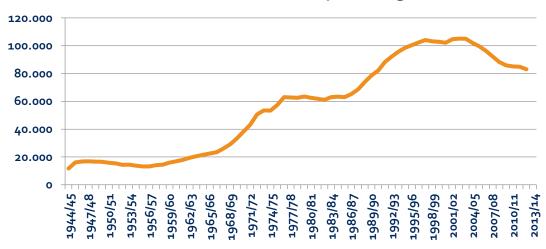
Agenda – Second part



- The three phases of the Italian university system in the republican era
- Changes of the Italian university system in the last phase
- Effects of recent policies and trends across disciplines
- Management Engineering field

The republican Italian university

The Italian republic has faced three important phases in the evolution of the Italian higher education system


The republican Italian university:

I phase (1950-1980) – I quantitative growth

- The birth of the mass university: from 300 thousands to 1 Mln students
- Dimensional growth of historical universities
- Concentration of university equipments

Students at the University of Bologna

Source: Own elaboration on Desalvo (1988) data

The republican Italian university:

II phase (1980-2008) - II quantitative growth

- Growth in the number of public universities. A growth higher than the increase in the number of students
- Important growth in the number of private universities along with the growth of telematic universities

No. of univ	Public	Private (traditional)	Private (telematic)	Tot.	No. students ('ooo)
1950	35	4		39	231
1960	36	4		40	268
1970	41	5		46	682
1980	46	6		52	1.048
1990	53	6		59	1.381
2000	65	13		78	1.687
2010	67	18	11	96	1.783

Recent changes in the Italian university system

III phase (2008-2016) – System contraction

Characteristics	2008	2016
Rector mandate	Renewable by statute	6 years (non-renewable)
• Funding	Historical base	Perfomance-based mechanism and standard- cost approach
• FFO	7,3 Mld €	6,9 Mld €
Performance evaluation	NO	ANVUR
Non-academic board members	Not mandatory	At least 3 out of 11
• Recruiting	Local calls	National habilitation
Tenured academic staff	62.768	50.192
Registered students	1,817 Mln	1,642 Mln (2014-15)

The impact of the third phase on disciplinary groups

- 1. What happens at the level of each (28) disciplinary group (e.g. ING-IND; ICAR; AGR; BIO)?
- 2. What about the (369) SSDs (e.g. IND-IND35; ING-IND34)?
- 3. How has ING-IND35 evolved compared to its macro disciplinary sector ING-IND, mainly considering the trend in students?

Focus: Disciplinary groups

Legenda: 28 disciplinary groups

Code	Disciplines	Code	Disciplines
AGR	Agrarie	MAT	Matematiche
BIO	Biologiche	MED	Mediche
CHIM	Chimiche	M-DEA	Scienze demoetnoantropologiche
SECS-P	Economia politica	M-FIL	Scienze filosofiche
ING-IND	Economico-industriali	M-GGR	Scienze geografiche
SECS-S	Economico-statistiche	GEO	Scienze geologiche
FIS	Fisiche	M-EDF	Scienze motorie
IUS	Giuridiche	M-PED	Scienze pedagogiche
INF	Informatiche	SPS	Scienze politiche
ICAR	Ingegneria civile e architettura	M-PSI	Scienze psicologiche
ING-INF	Ingegneristico-informatiche	VET	Scienze veterinarie
L-FIL-LET	Lettere	L-ANT	Scienze dell'antichità
L-OR	Lingue orientali	L-ART	Storia dell'arte
L-LIN	Linguistica generale e alle lingue e letterature straniere	M-STO	Storiche

Source: CINECA

Representativeness & evolution

Tenured academic staff (Full prof., Associate Prof.,

M-EDF: Var. % 2002-2016 : 586%; Var. % 2008-2016: 14% Data at 31° August 2016

Evolution of students over time per disciplinary group (nr. registered

students)

Disciplinary groups	2008/09	2009/10	2010/11	2011/12	2012/13	2013/14	2014/15	Δ%
ECONOMICS-STATISTICS	238.935	239.955	238.730	236.299	232.768	227.654	222.988	-7,2%
ENGINEERING	204.615	207.159	206.495	209.354	207.688	210.034	212.440	3,7%
MEDICINE*	150.703	156.199	161.936	165.453	165.935	168.452	176.659**	14,7%
LAW	216.015	212.930	211.787	207.189	195.018	187.781	176.578	-22,3%
SOCIO-POLITICAL	197.813	188.808	181.263	170.198	163.351	156.297	152.064	-30,1%
LITERARY	159.072	152.576	144.205	138.017	130.760	124.836	120.781	-31,7%
LINGUISTIC	96.189	95.864	94.124	92.888	95.618	96.263	97.699	+1,5%
Tot. students system level	1.814.344	1.799.542	1.781.786	1.704.428	1.709.408	1.676.956	1.652.592	-8,92%
% ENGINEERING on tot.	11,28%	11,51%	11,59%	12,28%	12,15%	12,52%	12,85%	

Note: We consider those sectors having at least 90,000 students in 2014/2015 (the representativeness of the considered groups is 64,2% at a system level)

Source: Own elaboration on MIUR data

^{*} Trend partly due to non-regular students

^{** 46,5%} of students has enrolled at Medicine and Surgery

Evolution of students over time per disciplinary group (nr. enrolling

students)

Disciplinary groups	2008/09	2009/10	2010/11	2011/12	2012/13	2013/14	2014/15	Δ%
ECONOMICS-STATISTICS	45.348	43.374	41.922	40.654	36.347	35.800	36.060	-20,48%
ENGINEEERING	33.447	34.983	34.755	35.491	34.316	34.110	35.052	4,80%
MEDICINE**	25.613	26.449	26.049	24.554	22.121	23.241	26.262	2,53%
SOCIO-POLITICAL	29.554	29.814	27.873	26.669	22.744	23.900	24.667	-16,54%
LAW	30.565	32.085	32.055	30.355	25.177	23.240	20.780	-32,01%
LINGUISTIC	17.645	17.185	16.711	17.539	18.071	18.957	19.585	10,99%
LITERARY	23.191	21.123	19.010	19.208	16.248	16.428	17.005	-26,67%
Tot. students system level	295.518	294.724	288.286	279.025	253.848	252.457	255.294	-13,61%
% ENGINEERING on tot.	11,32%	11,87%	12,06%	12,72%	13,52%	13,51%	13,73%	

Note: We consider those sectors having at least 15,000 enrolling students in 2014/2015

Source: Own elaboration on MIUR data

^{**}Courses with a limited number of available places

Mis-matching between total academic staff and students in 2008-2016

«Suffering» disciplinary groups in terms of academic staff

Var. 2008-2016	Academic staff	Registered students	Enrolling students
Medicine	-25,0%	14,7%	2,53%
Engineering	-14,9%*	3,7%	4,8%
Linguistic	-24,7%	1,5%	10,99%

«Suffering» disciplinary groups in terms of students

Var. 2008-2016	Academic staff	Registered students	Enrolling students
Law	-15,0%	-22,3%	-32,01%
Socio-political	-11,8%	-30,1%	-16,54%

^{*} Weighted-average considering ICAR; ING-INF; ING-IND

Note: 1) For students, data refer to disciplinary groups identified by MIUR in 2014/15 (more updated data), while for academic staff, data refer to disciplinary sectors (es. IND-IND; ICAR; MED). 2) The socio-political sector also includes the group SECS-P

Source: Own elaboration on MIUR data

Focus: Settori Scientifico-Disciplinari

SSD distribution per size

(Full prof., Associate Prof., Assistant Prof.)

Identification of 8 classes of SSD per number of tenured academic staff members in years 2008 e 2016

Classes per size (Tenured academic staff)	No. SSD (2008)	No. SSD (2016)	Var. members % 2008/2016
<=5	3	9	-39,76%
5-10	15	19	-24,28%
10-20	19	17	-20,58%
20-50	46	48	-18,57%
50-100	74	100	-16,76%
100-150	70	67	-18,54%
150-200	44	38	-19,42%
>200	99	71	-19,22%
Tot	370	369	-19,19%

Note: data at 31° August 2016

Source: CINECA

Growing SSDs 2008-2016: Top 10

Tenured academic staff (Full prof., Associate Prof., Assistant Prof.)

To	op 10 growing SSDs per tenured academic staff	2008	2016	Var. %
•	Bioingegneria industriale	56	68	21,4%
•	Lingue e letterature del Giappone e della Corea	29	32	10,3%
•	Scienze tecniche di medicina di laboratorio	91	100	9,9%
•	Medicina fisica e riabilitativa	58	63	8,6%
•	Psicobiologia e psicologia fisiologica	116	126	8,6%
•	Ingegneria sanitaria-ambientale	144	156	8,3%
•	Finanza aziendale	73	78	6,8%
•	Organizzazione aziendale	135	141	4,4%
•	Diritto pubblico comparato	113	117	3,5%
•	Ingegneria economico-gestionale	186	190	2,2%

Note: data at 31° August 2016

The analysis refers to those SSD having at least 20 members in 2002

Descreasing SSDs 2008-2016:

Worst 10

Tenured academic staff (Full prof., Associate Prof., Assistant Prof.)

W	orst 10 decreasing SSDs per tenured academic staff	2008	2016	Var. %
•	Urbanistica	245	147	-40,0%
•	Fisica nucleare e subnucleare	150	90	-40,0%
•	Storia della filosofia	314	187	-40,4%
•	Storia e istituzioni delle Americhe	34	20	-41,2%
•	Lingua e letteratura latina	275	160	-41,8%
•	Topografia antica	47	27	-42,6%
•	Indologia e tibetologia	16	9	-43,8%
•	Storia dell'Europa Orientale	43	23	-46,5%
•	Letteratura francese	220	115	-47,7%
•	Didattica e storia della fisica	46	20	-56,5%

Note: data at 31° August 2016

The analysis refers to those SSD having at least 20 members in 2002

Focus: ING-IND 35

Trend ING-IND 35 Total academic staff (Full/Associate/Assistant Professors)

Source: CINECA

Туре	2002	2008	2009	2010	2011	2012	2013	2014	2015	2016	Var.% 2002-2016	Var. % 2008-2016
Full P.	44	62	62	60	62	62	62	63	61	62	41%	0%
Associate P.	52	51	50	50	55	57	56	74	81	82	58%	61%
Tenured A.P.	38	73	73	79	84	81	80	59	48	46	21%	-37%
A.P.(TenureT)								0	2	4	-	-
A.P.(no TenureT.)							3	8	15	16	-	-
Tot. ING-IND 35	134	186	185	189	201	200	201	204	207	210	57%	13%
Tot. ING-IND	2.871	3.193	3.125	3.021	3.033	3.047	3.046	3.046	3.096	3.135	9,20%	-1,82
Tot. Italy	57.499	62.770	60.876	57.745	56.536	55.976	55.412	54.617	53.884	54.308	-5,55%	-13,48%

Data on 31 August 2016 – Values in slide n. 8, given A.P. component (ex Art.1 comma 14 L. 230/05) and CINECA data

Representativeness of Management Engineering: Total number of students (BSc+MSc)

Students	2008/09	2009/10	2010/11	2011/12	2012/13	2013/14	2014/15	Δ % (2008/09-2014/15)
Management Eng.	23.553	23.655	23.665	24.399	24.275	24.407	24.959	5,97%
Tot. Engineering	204.615	207.159	206.495	209.354	207.688	210.034	212.440	3,82%
% Management Eng.	11,51%	11,42%	11,46%	11,65%	11,69%	11,62%	11,75%	
Details:								
BSc Management Eng.	16.439	16.388	16.635	16.643	16.620	16.799	17.265	5,02%
BSc Tot. Engineering	156.732	156.921	156.675	156.854	153.894	154.445	155.357	-0,88%
% BSc Management Eng.	10,49%	10,44%	10,62%	10,61%	10,80%	10,88%	11,11%	
MSc Management Eng.	7.114	7.267	7.030	7.756	7.655	7.608	7.694	8,15%
MSc Tot. Engineering	47.883	50.238	49.820	52.500	53.794	55.589	57.083	19,21%
% MSc Management Eng.	14,86%	14,47%	14,11%	14,77%	14,23%	13,69%	13,48%	

^{*}See appendix for data definition.

Source: Statistica MIUR

Conclusions 1/2

- In the period 2008-2016, the academic staff has declined comparatively more than the student number, even if the ratio students/professors was high with respect to the Italian system
- As regards disciplinary groups, there is an important mis-matching between academic staff and student number
 - An excess of staff (law and socio-political studies)
 - > A deficit of staff (medicine-health studies, engineering, foreign languages)
- The case of the Italian Higher Education system shows the unintended effects of «cheese slicing» policies (i.e. equal linear cuts)

Conclusions 2/2

- There were several disciplinary fields (SSD) that suffered a severe reduction in terms of academic staff. Reduction above 40% over the period 2008-2016
- With respect to an average drop of 20% in terms of tenured academic staff, the disciplinary group ING-IND performed better (-13%)
- In such a scenario, the disciplinary field ING-IND35 has grown in terms
 of academic staff, although such growth has not been featured by an
 equivalent growth in terms of students, especially for MSc degrees

Our identity: who we are and where we are going Stefano Paleari*

Higher Education and Socioeconomic Development

Bergamo, I3-I4 October 2016
*Cattaneo, Meoli, Paleari, Salanti (2016), Unintended consequences of "cheese slicing" policies: The case of Italian universities

Appendix

- Management Engineering degrees in the MIUR database were identified by using the keywords «Ingegneria gestionale» in the field «corso di studi»
- MSc degrees were idenfied by selecting the following degree classes: 34/s;
 35/S; LM-31; LM-32; LM-33
- Engineering degrees were identified by selecting all two-year degrees LM/ and /S for 2014/2015 in the MIUR database, with the exclusion of LM-34, included in the «architettura» group, and the inclusion of LM-44 «Modellistica matematicofisica per l'ingegneria» and LM-53 «Scienza e ingegneria dei materiali»